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Two florigens and a florigen-like protein form a triple
regulatory module at the shoot apical meristem to promote
reproductive transitions in rice
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Abstract

Many plant species monitor and respond to changes in day length (photoperiod) for

aligning reproduction with a favourable season. Day length is measured in leaves and,

when appropriate, leads to the production of floral stimuli called florigens that are

transmitted to the shoot apical meristem to initiate inflorescence development . Rice

possesses two florigens encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING

LOCUS T 1 (RFT1) . Here we show that the arrival of Hd3a and RFT1 at the shoot apical

meristem activates FLOWERING LOCUS T-LIKE 1 (FT-L1), encoding a florigen-like

protein that shows features partially differentiating it from typical florigens. FT-L1

potentiates the effects of Hd3a and RFT1 during the conversion of the vegetative

meristem into an inflorescence meristem and organizes panicle branching by

imposing increasing determinacy to distal meristems. A module comprising Hd3a,

RFT1 and FT-L1 thus enables the initiation and balanced progression of panicle

development towards determinacy.
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Data availability

All data generated or analysed during this study are included in this Letter (and its

supplementary files). The 3D protein structure of FT-L1 was modelled on the basis of

available structural data on monomeric AtFT (PDB ID 6igh.1).
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